STEREOSELECTIVE PHOTOCYCLOADDITION OF EPOXYNAPHTHOQUINONES TO ALLYL ALCOHOLS

Kazuhiro MARUYAMA, Atsuhiro OSUKA, and Hitomi SUZUKI*

Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606

*Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790

Irradiation of a benzene solution of 2,3-disubstituted epoxy-naphthoquinones and allyl alcohols gave tetracyclic hemiketals $\underline{6}$.

Recently the photochemical generation of the carbonyl ylides $\underline{2}$ or 1,3-diradicals $\underline{3}$ from several epoxynaphthoquinones $\underline{1}$ has been reported. These products are trapped by olefins, giving tricyclic tetrahydrofuran derivatives. However, isolation of these primary cycloadducts usually requires work-up at a low conversion, since they are photolabile and readily converted into alkylidene phthalides or spiro-[oxetan-phthalide]s. Now we have found the photo-induced cycloaddition of epoxynaphthoquinones to allyl alcohols gives tetracyclic compounds containing hemiketal linkage in good yields even at a high conversion of epoxynaphthoquinones.

Typically, irradiation of 2,3-epoxy-2,3-dihydro-2,3-dimethyl-1,4-naphthoquinone ($\underline{1a}$) (8.25 mM) and allyl alcohol ($\underline{4a}$)(100 mM) in benzene with a 300W high-pressure Hg lamp through a Pyrex filter resulted in the stereoselective formation (84%) of tetracyclic compound ($\underline{6a}$). The structure of $\underline{6a}$ was determined by its elemental analysis and the following spectral data: IR(KBr) 3320(0H), 1700(C=0), and 1120 cm⁻¹;

H NMR (CDCl₃) 1.34(s, 3H), 1.50(s, 3H), 2.30(m, 2H), 2.63(m, 1H), 2.84(mobile, 1H), 3.75(d, J=10Hz, 1H), 4.04(dd, J=7 and 10Hz, 1H), and 7.36-7.70(m, 4H);

13 C NMR (CDCl₃) 203.2(s), 107.4(s), 94.4(s), 89.7(s), 71.3(t), 50.2(d), 44.1(t), 24.9(q), 19.5(q), and six sp² carbons; Mass (m/e) 260(M⁺), 242(M⁺-H₂0), 204, 186, and 184.

Similar cycloadducts $\underline{6b}$, $\underline{6c}$, and $\underline{6d}$ were formed in moderate to high yields on irradiation of $\underline{1a}$ and $\underline{1b}$ with $\underline{4a}$ or 2-methyl-3-butene-2-ol $\underline{4b}$ (Table). The photocycloaddition of $\underline{1c}$ showed a marked dependence on the olefins used; the cycloadduct $\underline{6e}$ was obtained in 82% yield from the reaction with $\underline{4a}$ but the intermediary ylide $\underline{2c}$ (R₁=Ph) or 1,3-diradical $\underline{3c}$ (R₁=Ph) was not trapped by $\underline{4b}$ at all. In the hope of obtaining a cage compound $\underline{7}$, the photocycloaddition of $\underline{1a}$ to \underline{cis} -2-buten-1,4-diol was attempted, but mono-hemiketal $\underline{8}$ was formed in 84% yield. In all runs examined, the corresponding exo-adducts were not found in the reaction mixture.

Table					
1	R ₁	4	R ₂	Products(mp)	Yields(%) ^{a)}
<u>la</u>	Me	<u>4a</u>	Н	<u>6a</u> (183-184)	84
<u>1a</u>	Me	<u>4b</u>	Me	<u>6b</u> (198)	62
<u>1b</u>	Et	<u>4a</u>	H	<u>6c</u> (147-148)	69 ^{b)}
<u>1b</u>	Et	<u>4b</u>	Me	<u>6d</u> (164-165)	64 ^{b)}
<u>1c</u>	Ph	<u>4a</u>	H	<u>6e</u> (227-228)	82
<u>lc</u>	Ph	<u>4b</u>	Me	c)	_

The lone pair electrons of allyl alcohols may play an important role in the stereoselective formation of $\underline{6}$ through the so-called secondary π -orbital overlap interaction with 1,3-dipole. Thus, we examined the photochemical reaction of $\underline{1a}$ with ethyl vinyl ether $\underline{9}$, which yielded $\underline{10}$ (mp, $108-109^{\circ}$ C) as the only primary adduct (in 75% yield at 30% conversion of $\underline{1a}$). The stereochemistry of $\underline{10}$ was determined by high field shift of methyl protons in ethoxy group(δ 0.74) due to the shielding effect of the benzene ring. Intramolecular 1,4-hemiketal formation protects $\underline{6}$ against the secondary photoisomerization which may arise only from the diketo-form 5.

The present results may provide an example that the photo-labile cycloadducts can be obtained by masking the photo-sensitive functionality with some groups of 1,3-dipolarophiles intramolecularly.

References and Notes

- 1. a) S. Arakawa, J. Org. Chem., $\underline{42}$, 3800(1977). b) H. Kato, H. Tezuka, K. Yamaguchi, K. Nowada, and Y. Nakamura, J. Chem. Soc. Perkin I, 1029(1978).
- 2. Spectral data of 8; mp 214-215°C; IR(KBr) 3400(OH), 1700(C=0), and 1250 cm⁻¹;

 ¹H NMR (CDCl₃) 1.33(s, 3H), 1.50(s, 3H), 2.60(m, 2H), 2.80(mobile, 1H), 3.80-4.00(m, 4H), 5.30(mobile, 1H), and 7.3-7.8(m, 4H).
- 3. To assure the structural proof on $\underline{10}$, the photochemical reaction of $\underline{1a}$ with 1,1-diethoxyethylene $\underline{11}$ was examined. In the 1 H NMR spectrum of the corresponding primary adducts $\underline{12}$, methyl protons of two ethoxy groups appeared at 0.76 and 1.20, relating to endo- and exo-ethoxy group, respectively.
- 4. A referee suggested the groud-state interactions of $\underline{1}$ and $\underline{4}$ by hemi-ketal formation. The 1 H NMR and UV spectra of $\underline{1a}$ in the presence of various amount of $\underline{4a}$, but no appreciable interaction was observed.

(Received May 17, 1980)